GCE AS/A level

WJEC
0977/01

MATHEMATICS - FP1
 Further Pure Mathematics

A.M. TUESDAY, 18 June 2013
$1^{1 / 2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Given that

$$
S_{n}=1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}
$$

obtain an expression for S_{n} in the form $a n^{3}-b n$, where a, b are positive rational numbers. [6]
2. The complex numbers u, v, w satisfy the equation

$$
\frac{1}{w}=\frac{1}{u}+\frac{1}{v} .
$$

(a) Given that $u=1-\mathrm{i}$ and $v=1+2 \mathrm{i}$, determine w in the form $x+\mathrm{i} y$.
(b) Find the modulus and argument of w.
3. The roots of the cubic equation $x^{3}-2 x^{2}+2 x+1=0$ are denoted by α, β, γ.
(a) Show that

$$
\begin{equation*}
\frac{\beta \gamma}{\alpha}+\frac{\gamma \alpha}{\beta}+\frac{\alpha \beta}{\gamma}=-8 . \tag{4}
\end{equation*}
$$

(b) Find the cubic equation whose roots are $\frac{\beta \gamma}{\alpha}, \frac{\gamma \alpha}{\beta}, \frac{\alpha \beta}{\gamma}$.
4. The transformation T in the plane consists of an anticlockwise rotation through 90° about the origin followed by a translation in which the point (x, y) is transformed to the point $(x+2, y+1)$ followed by a reflection in the line $y=x$.
(a) Show that the matrix representing T is

$$
\left[\begin{array}{rrr}
1 & 0 & 1 \tag{5}\\
0 & -1 & 2 \\
0 & 0 & 1
\end{array}\right] .
$$

(b) Show that T has no fixed points.
5. Using mathematical induction, prove that $7^{n}-1$ is divisible by 6 for all positive integers n. [6]
6. Consider the system of equations $\mathbf{A X}=\mathbf{B}$, where

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & \lambda & 3 \\
2 & 1 & \lambda \\
5 & 4 & 7
\end{array}\right] ; \mathbf{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] ; \mathbf{B}=\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]
$$

(a) (i) Find the determinant of \mathbf{A} in terms of the constant λ.
(ii) Show that \mathbf{A} is singular when $\lambda=2$ and determine the other value of λ for which \mathbf{A} is singular.
(b) Given that $\lambda=2$,
(i) show that the equations are consistent,
(ii) determine the general solution of the equations.
(c) Given that $\lambda=1$,
(i) find the adjugate matrix of \mathbf{A},
(ii) find the inverse of \mathbf{A},
(iii) hence solve the equations.
7. The function f is defined by

$$
f(x)=\frac{\sqrt{1+\sin x}}{(1+\tan x)^{2}} .
$$

Using logarithmic differentiation, determine the value of $f^{\prime}\left(\frac{\pi}{4}\right)$. Give your answer correct to three significant figures.
8. The complex numbers z and w are represented, respectively, by points $P(x, y)$ and $Q(u, v)$ in Argand diagrams and

$$
\begin{equation*}
w=z^{2} . \tag{4}
\end{equation*}
$$

(a) Obtain expressions for u and v in terms of x and y.
(b) The point P moves along the curve with equation $y^{2}-2 x^{2}=1$. Find the equation of the locus of Q.

