

GCE AS/A level

0977/01

MATHEMATICS – FP1 Further Pure Mathematics

A.M. TUESDAY, 18 June 2013 $1\frac{1}{2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Answer **all** questions. Sufficient working must be shown to demonstrate the **mathematical** method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. You are reminded of the necessity for good English and orderly presentation in your answers. 1. Given that

$$S_n = 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2$$

obtain an expression for S_n in the form $an^3 - bn$, where a, b are positive rational numbers. [6]

2. The complex numbers u, v, w satisfy the equation

$$\frac{1}{w} = \frac{1}{u} + \frac{1}{v}$$

- (a) Given that u = 1 i and v = 1 + 2i, determine w in the form x + iy. [6]
- (b) Find the modulus and argument of w.
- 3. The roots of the cubic equation $x^3 2x^2 + 2x + 1 = 0$ are denoted by α , β , γ .
 - (a) Show that

$$\frac{\beta\gamma}{\alpha} + \frac{\gamma\alpha}{\beta} + \frac{\alpha\beta}{\gamma} = -8.$$
[4]

[2]

[3]

(b) Find the cubic equation whose roots are
$$\frac{\beta\gamma}{\alpha}, \frac{\gamma\alpha}{\beta}, \frac{\alpha\beta}{\gamma}$$
. [7]

- 4. The transformation T in the plane consists of an anticlockwise rotation through 90° about the origin followed by a translation in which the point (x, y) is transformed to the point (x + 2, y + 1) followed by a reflection in the line y = x.
 - (a) Show that the matrix representing T is

Γ	1	0 -1 0	1	
	0	-1	$2 \cdot$	[5]
L	0	0	1	

- (b) Show that T has no fixed points.
- 5. Using mathematical induction, prove that $7^n 1$ is divisible by 6 for all positive integers *n*. [6]

6. Consider the system of equations AX = B, where

$$\mathbf{A} = \begin{bmatrix} 1 & \lambda & 3 \\ 2 & 1 & \lambda \\ 5 & 4 & 7 \end{bmatrix}; \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}; \mathbf{B} = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}.$$

- (a) (i) Find the determinant of A in terms of the constant λ .
 - (ii) Show that A is singular when $\lambda = 2$ and determine the other value of λ for which A is singular. [4]
- (b) Given that $\lambda = 2$,
 - (i) show that the equations are consistent,
 - (ii) determine the general solution of the equations. [7]

[7]

- (c) Given that $\lambda = 1$,
 - (i) find the adjugate matrix of **A**,
 - (ii) find the inverse of **A**,
 - (iii) hence solve the equations.
- 7. The function *f* is defined by

$$f(x) = \frac{\sqrt{1 + \sin x}}{(1 + \tan x)^2}.$$

Using logarithmic differentiation, determine the value of $f'\left(\frac{\pi}{4}\right)$. Give your answer correct to three significant figures. [9]

8. The complex numbers z and w are represented, respectively, by points P(x, y) and Q(u, v) in Argand diagrams and

$$w = z^2$$
.

- (a) Obtain expressions for u and v in terms of x and y. [4]
- (b) The point P moves along the curve with equation $y^2 2x^2 = 1$. Find the equation of the locus of Q. [5]